The Total Interval Number of a Graph II: Trees and Complexity
نویسندگان
چکیده
A multiple-interval representation of a simple graph G assigns each vertex a union of disjoint real intervals, such that vertices are adjacent if and only if their assigned sets intersect. The total interval number I (G) is the minimum of the total number of intervals used in any such representation of G. For triangle-free graphs, I (G) = m + t(G), where m is the number of edges in G and t(G) is the minimum number of pairwise edge-disjoint trails such that every edge of G has an endpoint in at least one of the trails. This yields the NP-completeness of testing I (G) = m + 1, even for triangle-free 3-regular planar graphs, and an alternative proof that HAMILTONIAN CYCLE is NP-complete for line graphs. It also yields a linear-time algorithm to compute I (G) for trees and a characterization of the trees requiring m + t intervals, for fixed t. Further corollaries include the Aigner/Andreae bound of I (G) ≤ (5n − 3)/4 for n-vertex trees (achieved by subdividing every edge of a star), a characterization of the extremal trees, and a shorter proof of the extremal bound (5m + 2)/4 for connected graphs. Ke ywords: intersection graphs, intervals, trees, extremal problem AMS Subject Classification: 05C05, 05C35, 05C85 Running head: TOTAL INTERVAL NUMBER, II 1Research supported in part by ONR Grant N00014-85K0570.
منابع مشابه
On trees attaining an upper bound on the total domination number
A total dominating set of a graph $G$ is a set $D$ of vertices of $G$ such that every vertex of $G$ has a neighbor in $D$. The total domination number of a graph $G$, denoted by $gamma_t(G)$, is~the minimum cardinality of a total dominating set of $G$. Chellali and Haynes [Total and paired-domination numbers of a tree, AKCE International ournal of Graphs and Combinatorics 1 (2004), 6...
متن کاملCo-Roman domination in trees
Abstract: Let G=(V,E) be a graph and let f:V(G)→{0,1,2} be a function. A vertex v is protected with respect to f, if f(v)>0 or f(v)=0 and v is adjacent to a vertex of positive weight. The function f is a co-Roman dominating function, abbreviated CRDF if: (i) every vertex in V is protected, and (ii) each u∈V with positive weight has a neighbor v∈V with f(v)=0 such that the func...
متن کاملA characterization relating domination, semitotal domination and total Roman domination in trees
A total Roman dominating function on a graph $G$ is a function $f: V(G) rightarrow {0,1,2}$ such that for every vertex $vin V(G)$ with $f(v)=0$ there exists a vertex $uin V(G)$ adjacent to $v$ with $f(u)=2$, and the subgraph induced by the set ${xin V(G): f(x)geq 1}$ has no isolated vertices. The total Roman domination number of $G$, denoted $gamma_{tR}(G)$, is the minimum weight $omega(f)=sum_...
متن کاملOn relation between the Kirchhoff index and number of spanning trees of graph
Let $G=(V,E)$, $V={1,2,ldots,n}$, $E={e_1,e_2,ldots,e_m}$,be a simple connected graph, with sequence of vertex degrees$Delta =d_1geq d_2geqcdotsgeq d_n=delta >0$ and Laplacian eigenvalues$mu_1geq mu_2geqcdotsgeqmu_{n-1}>mu_n=0$. Denote by $Kf(G)=nsum_{i=1}^{n-1}frac{1}{mu_i}$ and $t=t(G)=frac 1n prod_{i=1}^{n-1} mu_i$ the Kirchhoff index and number of spanning tree...
متن کاملRoman domination excellent graphs: trees
A Roman dominating function (RDF) on a graph $G = (V, E)$ is a labeling $f : V rightarrow {0, 1, 2}$ suchthat every vertex with label $0$ has a neighbor with label $2$. The weight of $f$ is the value $f(V) = Sigma_{vin V} f(v)$The Roman domination number, $gamma_R(G)$, of $G$ is theminimum weight of an RDF on $G$.An RDF of minimum weight is called a $gamma_R$-function.A graph G is said to be $g...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Discrete Math.
دوره 9 شماره
صفحات -
تاریخ انتشار 1996